The Myxococcus xanthus Two-Component System CorSR Regulates Expression of a Gene Cluster Involved in Maintaining Copper Tolerance during Growth and Development

نویسندگان

  • María Celestina Sánchez-Sutil
  • Juana Pérez
  • Nuria Gómez-Santos
  • Lawrence J. Shimkets
  • Aurelio Moraleda-Muñoz
  • José Muñoz-Dorado
چکیده

Myxococcus xanthus is a soil-dwelling member of the δ-Proteobacteria that exhibits a complex developmental cycle upon starvation. Development comprises aggregation and differentiation into environmentally resistant myxospores in an environment that includes fluctuations in metal ion concentrations. While copper is essential for M. xanthus cells because several housekeeping enzymes use it as a cofactor, high copper concentrations are toxic. These opposing effects force cells to maintain a tight copper homeostasis. A plethora of paralogous genes involved in copper detoxification, all of which are differentially regulated, have been reported in M. xanthus. The use of in-frame deletion mutants and fusions with the reporter gene lacZ has allowed the identification of a two-component system, CorSR, that modulates the expression of an operon termed curA consisting of nine genes whose expression slowly increases after metal addition, reaching a plateau. Transcriptional regulation of this operon is complex because transcription can be initiated at different promoters and by different types of regulators. These genes confer copper tolerance during growth and development. Copper induces carotenoid production in a ΔcorSR mutant at lower concentrations than with the wild-type strain due to lack of expression of a gene product resembling subunit III of cbb3-type cytochrome c oxidase. This data may explain why copper induces carotenoid biosynthesis at suboptimal rather than optimal growth conditions in wild-type strains.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Differential expression of the three multicopper oxidases from Myxococcus xanthus.

Myxococcus xanthus is a soil bacterium that undergoes a unique life cycle among the prokaryotes upon starvation, which includes the formation of macroscopic structures, the fruiting bodies, and the differentiation of vegetative rods into coccoid myxospores. This peculiarity offers the opportunity to study the copper response in this bacterium in two different stages. In fact, M. xanthus vegetat...

متن کامل

SigF, a new sigma factor required for a motility system of Myxococcus xanthus.

A new sigma factor, SigF, was identified from the social and developmental bacterium Myxococcus xanthus. SigF is required for fruiting body formation during development as well as social motility during vegetative growth. Analysis of gene expression indicates that it is possible that the sigF gene is involved in regulation of an unidentified gene for social motility.

متن کامل

Role of two novel two-component regulatory systems in development and phosphatase expression in Myxococcus xanthus.

We have cloned a two-component regulatory system (phoR2-phoP2) of Myxococcus xanthus while searching for genes that encode proteins with phosphatase activity, where phoR2 encodes the histidine kinase and phoP2 encodes the response regulator. A second system, phoR3-phoP3, was identified and isolated by using phoP2 as a probe. These two systems are quite similar, sharing identities along the full...

متن کامل

CrdS and CrdA Comprise a Two-Component System That Is Cooperatively Regulated by the Che3 Chemosensory System in Myxococcus xanthus

Myxococcus xanthus serves as a model organism for development and complex signal transduction. Regulation of developmental aggregation and sporulation is controlled, in part, by the Che3 chemosensory system. The Che3 pathway consists of homologs to two methyl-accepting chemotaxis proteins (MCPs), CheA, CheW, CheB, and CheR but not CheY. Instead, the output for Che3 is the NtrC homolog CrdA, whi...

متن کامل

Seawater-regulated genes for two-component systems and outer membrane proteins in myxococcus.

When salt-tolerant Myxococcus cells are moved to a seawater environment, they change their growth, morphology, and developmental behavior. Outer membrane proteins and signal transduction pathways may play important roles in this shift. Chip hybridization targeting the genes predicted to encode 226 two-component signal transduction pathways and 74 outer membrane proteins of M. xanthus DK1622 rev...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:

دوره 8  شماره 

صفحات  -

تاریخ انتشار 2013